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Abstract
We use theory and computer simulation to study the structure and phase behavior of
colloid–polymer mixtures in the presence of quenched disorder. The Asakura–Oosawa model
(AO) (Asakura and Oosawa 1954 J. Chem. Phys. 22 1255) is used to describe the
colloid–colloid, colloid–polymer, and polymer–polymer pair interactions. We then investigate
the behavior of this model in the presence of frozen-in (quenched) obstacles. The obstacles will
be placed according to two different scenarios, both of which are experimentally feasible. In the
first scenario, polymers are distributed at positions drawn from an ideal gas configuration. In
the second scenario, colloidal particles are distributed at positions drawn from an equilibrium
hard sphere configuration. We investigate how the unmixing transition of the AO model is
affected by the type of quenched disorder. The theoretical formalism is based on the replica
method of Given and Stell (1994 Physica A 209 495). Our foremost aim is to test the accuracy
of three common closures to the replica Ornstein–Zernike equations, namely the hypernetted
chain, the Percus–Yevick, and the Martinov–Sarkisov equations. The accuracy is determined by
comparison with grand canonical Monte Carlo simulations. We find that, for quenched polymer
disorder, all three closures perform remarkably well. However, when quenched colloid disorder
is considered, i.e. the second mentioned scenario, the predictions of all three closures worsen
dramatically.

1. Introduction

The behavior of fluid phases in the presence of quenched
disorder has received considerable attention over the years. In
part, this is due to the strong link to technological applica-
tions [1]. However, there is also a link to fundamental physics,
since quenched disorder in fluids gives rise to ‘random-
fields’ [2]. Consequently, these systems have received con-
siderable attention in experiments [3, 4], and sparked numer-
ous theoretical and simulational investigations [5–15]. On
the theoretical side, the study of fluids with quenched disor-
der has had a boost, thanks to the concept of the ‘quenched–
annealed’ mixture, proposed by Madden and Glandt [5]. Here,

3 Present address: Institute of Theoretical Physics, Georg-August-Universität,
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.

a fluid of mobile particles is confined to a random matrix
of immobile particles, with the structure of the random ma-
trix drawn from some equilibrium high-temperature distribu-
tion. In a subsequent paper, Madden generalized this ap-
proach to the case where the structure of the random matrix
was essentially arbitrary [6]. In both cases, the correspond-
ing Ornstein–Zernike relations describing the structure of this
quenched–annealed system were derived. In 1994, Given and
Stell demonstrated that these relations were in fact approxi-
mate, and formulated a new set of formally exact equations,
called the replica Ornstein–Zernike (ROZ) equations [7]. Re-
cently, Paschinger and Kahl [15] generalized the ROZ equa-
tions to the case of a two-component fluid with quenched dis-
order, i.e. a fluid of two mobile species A and B, confined to a
random matrix of species C.
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As for the bulk Ornstein–Zernike equations, numerical
solutions of the ROZ equations require that a closure relation
be specified. For bulk fluids (by bulk we mean in the
absence of quenched disorder), numerous closure relations
have been proposed, and their accuracy has been tested quite
extensively over the years [16]. In contrast, for fluids with
quenched disorder, the accuracy of many closure relations
is still untested. The aim of this paper is to improve on
this state of affairs. More specifically, we will use the ROZ
equations to describe a mixture of colloids and polymers
with quenched disorder. The interactions in the mixture are
those of the Asakura–Oosawa (AO) model [17, 18]; quenched
disorder is introduced according to two scenarios. In the first
scenario, polymers are distributed at positions drawn from an
ideal gas configuration. In the second scenario, colloids are
distributed at positions drawn from an equilibrium hard sphere
configuration. For both scenarios, we solve the corresponding
ROZ equations using three closure relations, namely (1) the
hypernetted chain (HNC) approximation, (2) the Percus–
Yevick (PY) equations, and (3) the Martinov–Sarkisov (MS)
equations. The predictions of the closures are then compared
to grand canonical Monte Carlo (MC) simulations. We present
and compare binodal data, as well as pair correlation functions
obtained at various state points in the phase diagram. An
interesting twist of this investigation is that both the theory and
the simulation treat colloid and polymer degrees of freedom
explicitly. This means that full information regarding the
correlations is available, including those involving the polymer
coordinates.

Our main finding is that the integral equation closures
can reasonably well predict the structural properties of the AO
model in the presence of quenched polymer disorder. At low
colloid density, HNC performs surprisingly well, but it fails at
higher densities. At high colloid density, structural properties
are better captured by the PY and MS closures. Regarding the
binodal, we found that HNC becomes numerically unstable,
but results could still be obtained using PY and MS. In contrast,
when quenched colloid disorder is considered, the predictions
of all three closures worsen dramatically, to the point where
qualitative discrepancies with the simulations arise. Our work
thus emphasizes the pressing need for improved liquid state
theories to predict all the trends correctly.

The outline of this paper is as follows. In section 2 we
introduce the AO model, as well as the two types of quenched
disorder that we plan to investigate. Next, in section 3, we
formulate and solve the ROZ equations for our problem. The
simulation method is described in section 4. Our results are
presented in section 5, and we end with a discussion and
summary in section 6.

2. Model parameters

2.1. The AO model

In the AO model [17, 18], colloids (species c) and polymers
(species p) are treated as spheres with respective diameters σc

and σp. Hard sphere interactions are assumed between colloid–
colloid and colloid–polymer pairs, while the polymer–polymer

interaction is taken to be ideal. This leads to the following pair
potentials:

ucc(r) =
{

∞ r < σc

0 otherwise,
(1a)

ucp(r) =
{

∞ r < (σc + σp)/2

0 otherwise,
(1b)

upp(r) = 0 (1c)

with r the center-to-center distance between two particles. As
bulk thermodynamic parameters, we use the packing fractions
ηi = πσ 3

i Ni /(6V ), with V the system volume and Ni the
number of particles of species i = (c, p). As an alternative
to ηp, we also introduce the polymer reservoir packing fraction
ηr

p. For the present case of ideal polymers, one simply has
ηr

p = πσ 3
p zp/6, with zp the polymer fugacity. The colloid-to-

polymer size ratio is denoted q ≡ σp/σc. As is well known,
under certain conditions the AO model phase separates into
a colloid-rich (polymer poor) and colloid-poor (polymer rich)
domain [19]. If one ‘identifies’ the colloid-rich phase with
a liquid, and the colloid-poor phase with a gas, the phase
separation can be treated in much the same way as the liquid–
gas transition. In particular, as for the liquid–gas transition, it
is possible to construct a binodal.

2.2. Binodal representations

The binodal marks the region in the phase diagram where phase
separation occurs. It may be represented in several ways.
A popular choice is the reservoir representation, commonly
used by computer simulation and density functional theory.
Here, one fixes the ‘fugacity’ ηr

p, and records the respective
packing fractions ηc(G) and ηc(L) of the colloids in the gas
and liquid phase. Provided ηr

p exceeds its critical value,
coexisting phases can thus be identified. The binodal then
becomes a curve in the (ηc, η

r
p)-plane, similar to the (density,

temperature)-binodal of simple fluids (strictly speaking, ηr
p

must be identified with inverse temperature). Unfortunately,
ηr

p is not accessible in experiments, nor by integral equation
theory. For this reason, colloid–polymer binodals are often
shown in system representation. Here, the actual packing
fractions, ηc(G) and ηp(G), of colloids and polymers in
the gas phase are plotted as a single point in the (ηc, ηp)-
plane, together with the corresponding point for the liquid
phase (ηc(L) and ηp(L)). Compared to the binodal in
reservoir representation, the binodal in system representation
appears somewhat stretched and rotated. Since we plan to
compare simulation data to integral equation theory, the system
representation will mostly be used in this work. Nevertheless,
in order to emphasize certain trends in the simulation data, the
reservoir representation will also occasionally be used.

2.3. Introducing quenched disorder

Next, we explain how the AO model may be extended to
also include quenched disorder. According to the quenched–
annealed mixture approach [5], the idea is to first generate
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a matrix. The matrix is simply a configuration of particles
whose spatial coordinates have been selected ‘following some
recipe’. Once the matrix has been generated, the matrix
particles are no longer allowed to move, i.e. their positions
are frozen (quenched). Next, the fluid of interest, in our case
the AO model, is introduced into the matrix, and properties of
interest are collected (here: binodal lines and pair correlation
functions). Once these properties have been obtained, the
procedure is repeated using a different realization of the matrix,
eventually culminating in a quenched average over many
different matrix realizations. How this quenched average must
be obtained in practice is quite a subtle matter. For integral
equation theory, details are provided in section 3 and for the
computer simulations in section 4. In this section, we simply
outline the recipes used by us to construct the matrices. As
was announced in section 1, two types of matrix disorder are
investigated here.

2.3.1. The polymer matrix. The first approach is to use for
the matrix an ideal gas configuration of spheres (species M) of
diameter σM at packing fraction ηM. In a computer simulation,
such a matrix can easily be generated by distributing the
matrix particles randomly through the simulation box. Once
the matrix has been generated, colloids and polymers are
introduced, which interact with each other via the AO potential.
In addition, we couple the colloids and the polymers to the
matrix via the following pair potentials

ucM(r) =
{

∞ r < (σc + σM)/2

0 otherwise,
(2a)

upM(r) = 0, (2b)

with r the center-to-center distance. In other words, hard
sphere interactions are assumed between colloid–matrix pairs,
while polymer–matrix pairs do not interact. In principle, such
a matrix could be realized experimentally by trapping polymer
particles. Therefore, this realization of quenched disorder is
termed a ‘polymer’ matrix. In the remainder of this work,
all results reported for the polymer matrix use a colloid-to-
polymer size ratio q = 1.0, σc = σM, and ηM = 0.05. Note
that polymer matrices are also considered theoretically in [12].

2.3.2. The colloid matrix. In the second approach, we use
for the matrix an equilibrium hard sphere configuration. From
a simulation point of view, such a matrix is slightly more
complicated to generate since matrix–matrix pairs may no
longer overlap. Here, we let the matrix couple to the colloids
and polymers via

ucM(r) =
{

∞ r < (σc + σM)/2

0 otherwise,
(3a)

upM(r) =
{

∞ r < (σp + σM)/2

0 otherwise,
(3b)

with r again the center-to-center distance. In the above, the
polymers also experience hard sphere interactions with the

matrix. Experimentally, such matrix interactions could be
realized by trapping colloidal particles. Hence, we shall refer
to this matrix as a ‘colloid’ matrix. Unless noted otherwise, all
results reported for the colloid matrix use a colloid-to-polymer
size ratio q = 0.8, σc = σM, and ηM = 0.05.

3. Integral equation theory

One of the basic ideas underlying the statistical mechanics
of quenched–annealed systems exploits the replica method,
originally used for spin-glasses [20]. This approach was
applied for the first time by Given and Stell, who formulated
the counterpart of the Ornstein–Zernike equations for fluids
with quenched disorder [7]. This new set of equations, the so-
called replica Ornstein–Zernike equations (ROZ), establishes a
link between matrix–matrix, matrix–fluid, and fluid–fluid pair
correlations. The ROZ set can be solved with the standard
closure relations of liquid state theory. As announced in
section 1, we explicitly consider three of them, namely the
HNC closure

BHNC
i j (r) = 0, (4)

the PY closure

BPY
i j (r) = log[1 + γi j(r)] − 1 − γi j(r), (5)

and the MS closure

BMS
i j (r) = [1 − 2γi j(r)]1/2 − 1 − γi j(r). (6)

In the above, γi j(r) is the indirect correlation function given by
γi j(r) = gi j(r) − ci j(r) − 1, with gi j(r) and ci j(r) the radial
distribution and the direct correlation functions for particles
labeled i and j , respectively. The so-called bridge function
Bi j(r) is related to the other correlations by means of the exact
relation

gi j(r) = exp[−βui j(r) + γi j(r) + Bi j(r)], (7)

where ui j(r) is the AO pair potential for particles labeled i and
j . Furthermore, β = 1/kBT with kB being the Boltzmann
constant and T the absolute temperature. Each of the above
closures was solved numerically using a Picard method [21],
in which the solution is obtained iteratively by converting the
equations to Fourier space, and back again into direct space,
until convergence is reached. A standard mixing procedure,
in which the ‘new’ solution uses 90% of the ‘old’ solution,
was implemented to ensure proper convergence. A grid of
1024 points, with a spacing of 0.01σM, is used in the main
part of our calculations (we have checked that no noticeable
variation in the structural and thermodynamic quantities is
obtained by doubling the number of grid points).

3.1. Thermodynamic quantities

One of the quantities straightforwardly obtained from
the correlation functions is the inverse of the isothermal
compressibility(

β
∂ P

∂ρ

)
T,V,N,ηM

= 1

ρkBTχT
= 1 −

∑
i

ρi

ρ

∑
j

ρ j c̃i j(0),

(8)
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where c̃i j(0) is the Fourier transform of ci j(r) at zero
wavevector, ρ j , j = (c, p), and ρ are the colloid, polymer,
and total densities; V and N are the total volume and the
total number of particles, respectively. Another important
quantity is the ratio between the (connected) composition–
composition structure factor at zero wavevector SC

xx (0) and the
corresponding value for an ideal mixture x(1 − x) [22]

SC
xx (0)

x(1 − x)
= (1 − x)SC

pp(0) + x SC
cc(0) − 2(x(1 − x))1/2SC

cp(0),

(9)
where x = Np/(Np + Nc) is the polymer composition
and SC

pp(0), SC
cc(0), SC

cp(0) are, respectively, the connected
parts of the polymer–polymer, colloid–colloid and colloid–
polymer structure factors at zero wavevector. The peculiarity
of connectivity is defined in terms of subsets of Mayer graphs
contributing to this structural function (the interested reader
may find extended details about it in [7]). In the following
text and in the related figures we omit the superscript C
(which refers to the feature of connectivity) for not making the
notation heavy. High values of Sxx (0) signal a trend of phase
separation between colloid and polymer species.

The thermodynamic quantity necessary to construct the
coexistence curve is the Gibbs free energy at constant pressure,
or alternatively the chemical potentials of the two species.
The expression of the total pressure for ternary quenched–
annealed systems is not straightforwardly obtained by means
of the virial equation [23]. Thus, for each composition x (we
considered 30 of them between 0.05 < x < 0.95), we are
forced to integrate equation (8) starting from a low density
(with total initial packing fraction ηc + ηp � 0.0025) in
order to obtain the pressure. In principle, the availability of a
formula relating the chemical potentials to the thermodynamic
state point makes it possible to estimate the phase diagram
without resorting to thermodynamic integration. However, the
necessity of calculating the pressure starting from low density
makes fruitless the computational advantage of using such a
closed expression for the chemical potentials, for example the
one based on the star function [22]. Moreover, the pressure
obtained from the compressibility route (see equation (8))
is not expected to be consistent with the one that can be
deduced from the Gibbs–Duhem relation because of a lack
of thermodynamic and structural consistency of the integral
equation theories [23].

This drawback, i.e. the different values achievable for the
pressure along the possible thermodynamic routes, also implies
that the thermodynamic potentials will vary accordingly. Thus,
in order to determine an unambiguous estimate of the phase
diagram, one has to take care to use only quantities calculated
within the same thermodynamic route. For this reason, we
estimate the excess Helmholtz free energy Aex by integrating
again the excess part of the pressure starting from low density.
Finally, we obtained the excess contribution to the Gibbs free
energy via

βGex

N
= β Aex

N
+ β P/ρ − 1. (10)

The total Gibbs free energy is calculated by adding to the latter
quantity the ideal gas part (omitting the kinetic part related to

the de Broglie wavelength)

βG id

N
= x ln ρp + (1 − x) ln ρc. (11)

The Gibbs free energy was interpolated for composition with
cubic splines, and these fits were used to determine the Gibbs
free energy at constant pressure.

3.2. Phase coexistence

The coexistence curve was obtained by applying the
construction of the common tangent to the Gibbs free energy
at constant pressure. By numerical inspection we found that
the Gibbs free energy plotted as a function of the composition
at constant pressure can be interpolated by a fourth-order
polynomial:

βG

N
= 
4x4 + 
3x3 + 
2x2 + 
1x + 
0, (12)

where 
i are the corresponding expansion coefficients. For
pressures greater than the critical one, the Gibbs free energy
turns out to be sampled just on a limited number of state
points. This drawback is due to the loss of numerical stability
of our algorithm in the proximity of the unmixing spinodal. As
explained in [24], the severity of this problem may be estimated
from the discriminant � of the second-order equation (the
second derivative of the polynomial fit of the Gibbs free
energy):

� = 9
2
3 − 24
2
4. (13)

The mixture phase separates into two different equilibrium
compositions, whenever � becomes greater than zero. In order
to check the consistency of our procedure, we monitored � as
a function of the total pressure, from negative values (at which
the Gibbs free energy is fully sampled on a grid of 30 points
because there is no phase coexistence), up to positive values.
For pressures where � varies without manifest discontinuities,
the coexistence concentrations can be estimated reliably. In
contrast, jumps in the discriminant indicate that the Gibbs
free energy is poorly sampled, in which case the coexistence
concentrations cannot be reliably obtained. In the upper panel
of figure 1, we plot � versus the reduced pressure P� =
Pσ 3

M/kBT ; the lower panel shows the number of (composition)
points x where the Gibbs free energy could be obtained, as a
function of the pressure. From figure 1, the progressive lack of
accurate data at high pressures becomes clear.

In the upper panel of figure 2 we show the Gibbs free
energy G for a subcritical pressure P∗ = 0.5, as well
as for a supercritical pressure P∗ = 1.66. In the lower
panel of figure 2 we show the ratio between Sxx (0) and the
corresponding value for an ideal mixture, for the same two
state points as used in the upper panel. Note that this ratio
provides a measure of how closely the numerical procedure
allows one to approach the spinodal. Phase coexistence
properties are readily obtained from the first derivative G ′ of
the free energy with respect to composition (see figure 3).
We note that the mixture exhibits a low consolution critical
point, thus we observe phase separation at pressures higher

4
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Figure 1. Plots illustrating for which reduced pressures
P� = Pσ 3

M/kBT the coexistence concentrations can be obtained
reliably using our method. The data in these plots were obtained for
the AO model confined to the polymer matrix. Upper panel: the
discriminant � of the second derivative of the Gibbs free energy (see
text for details) versus P�. At high pressures, jumps in � begin to
show-up, in which case our numerical procedure breaks down, and
coexistence concentrations can no longer be obtained reliably. Lower
panel: number of x points that could be used in the
fourth-polynomial fit to the Gibbs free energy, as a function of P�.
At high pressures, x decreases significantly, indicating that
coexistence concentrations can no longer be obtained reliably.
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Figure 2. Free energy and structural data for the AO model confined
to the polymer matrix. Upper panel: Gibbs free energy G as a
function of the polymer composition x at reduced pressure P∗ = 0.5
(upper curve) and P∗ = 1.66 (lower curve). The open circles were
obtained using the MS closure. The full resp. broken line shows the
result of a fourth-order polynomial fit. Lower panel:
composition–composition structure factor as a function of the
polymer composition for P∗ = 0.5 (lower curve) and P∗ = 1.66
(upper curve).

than the critical one. For such pressures, G ′ exhibits
van der Waals-like loops (see the inset of figure 3). In
these cases, it is trivial to obtain the binodal compositions
(using the Maxwell construction) as well as the spinodal
compositions (the relative maximum and minimum of G ′).
As an illustration, we have calculated G ′ for a number of
pressures P∗, and constructed the binodal and spinodal in
figure 4.
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Figure 3. First derivative of the Gibbs free energy G ′ with respect to
composition versus composition x for the AO model confined to a
polymer matrix. The full line shows G ′ at reduced pressure
P∗ = 1.66; the dashed line at P∗ = 0.5. The inset shows a
magnification near the van der Waals loop for P∗ = 1.66, in order to
illustrate the Maxwell construction.
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Figure 4. Phase coexistence data of the AO model confined to a
colloid matrix and using the PY closure relation. The left panel
shows the binodal (full lines) and spinodal (dotted lines) in system
representation, i.e. using the (ηc, ηp)-plane. The right panel shows
the phase diagram in pressure–composition representation (binodals
only). In both panels, data for two different colloid-to-polymer size
ratios are shown, namely q = 0.8 (lower data) and q = 1.0 (upper
data); diamonds indicate critical points.

4. Computer simulations

4.1. Grand canonical ensemble

Computer simulations of fluids with quenched disorder present
a number of complications. In constant pressure and Gibbs
ensemble simulations, for example, the volume of the system is
a fluctuating quantity. Typically, volume changes are realized
via a rescaling of the simulation box. In the presence of a
matrix, however, such rescaling operations inevitably alter the
matrix, and are therefore not permitted. Consequently, constant
pressure and Gibbs ensemble simulations involving quenched
disorder require special dedicated algorithms [25, 26]. In this
paper, we circumvent the problem by using a grand canonical
(GC) ensemble. In the GC ensemble, volume is constant,
and so rescaling operations are not needed. Indeed, previous
simulations of fluids with quenched disorder have already

5
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exploited the advantages of the GC ensemble [8, 10, 11, 14].
The GC ensemble is moreover powerful because it provides
easy access to phase coexistence properties, both in the vicinity
of the critical point and away from it. The reason is that, in the
GC ensemble, the number of particles fluctuates. This makes
it possible to measure the distribution P(Nc), defined as the
probability to observe a system with Nc colloids in it. Then,
phase coexistence properties can be accurately obtained from
the positions of the peaks in P(Nc) [27].

4.2. Establishing coexistence without quenched disorder

In GC simulations of the AO model without quenched
disorder, the appropriate control parameters are the fugacities
zc and zp, of colloid and polymers, respectively (following
convention, we use ηr

p instead of zp). For ηr
p above

its critical value, P(Nc) becomes double-peaked (bimodal),
provided zc is tuned to its coexistence value. Away from
the critical point, the coexistence zc can be obtained via
the ‘equal-area’ rule [28, 29]; closer to the critical point,
where finite-size effects are important, different criteria can
be used [30]. Typical distributions P(Nc) for the AO model
(without quenched disorder) have been reported extensively
before [27, 31, 32]. From the bimodal form of P(Nc), phase
coexistence properties are readily obtained: the peak at low
(high) Nc yields the density of the colloidal gas (liquid) phase.
We remind the reader that, close to the critical point, such
a procedure should always be accompanied with a finite-size
scaling analysis.

4.3. Establishing coexistence with quenched disorder

It is possible to extend the above GC approach to the
case of an AO model with quenched disorder. Here, the
sought-for quantity is the free energy distribution W (Nc),
which must be obtained by performing an average over many
different realizations of the quenched disorder. W (Nc) can
be constructed recursively from the free energy differences
[�F(Nc − 1, Nc)]qd. For a single realization of quenched
disorder, �F(Nc−1, Nc) is the free energy difference between
the states with Nc and Nc − 1 colloids; [.]qd represents an
average over quenched disorder realizations. The distribution
W (Nc) is constructed recursively using

W (0) ≡ 0,

W (1) = W (0) + [�F(0, 1)]qd,

W (Nc) = W (Nc − 1) + [�F(Nc − 1, Nc)]qd.

(14)

Once W (Nc) is known, the probability distribution in the
number of colloids becomes P(Nc) ∝ exp(−W (Nc)/kBT ).
Provided ηr

p exceeds its critical value, and zc assumes its
coexistence value, P(Nc) becomes bimodal, and coexistence
properties can be obtained in much the same way as before.

4.4. Implementation details

In this work, the GC simulations are performed using a
cluster move, whereby colloids and polymers are explicitly

included [27, 32]. We use cubic simulation boxes of size
L × L × L with periodic boundary conditions. At the start of
each simulation, a quenched matrix is generated, which, in this
work, is either of the ‘polymer’ or the ‘colloid’ type. Next, for
some ηr

p of interest, the free energy differences �F(Nc−1, Nc)

are obtained using a biased sampling scheme called successive
umbrella sampling [33]. The idea of this scheme is to divide
the simulation into windows. In the first window, Nc is
allowed to fluctuate between 0 and 1; in the second, between
1 and 2, and so forth. The number of polymers is allowed to
fluctuate freely in each window. The simulation in the first
window yields the free energy difference �F(0, 1), essentially
by counting how often the states with Nc = 0 and Nc = 1 were
visited [33]. The remaining free energy differences follow
from higher windows. This procedure is repeated for many
different matrix realizations, typically 100–250, and the free
energy differences �F(Nc − 1, Nc) are averaged to obtain
[�F(Nc − 1, Nc)]qd. These are eventually substituted into
equation (14) to obtain the free energy distribution W (Nc).
In our simulations, we typically set the colloid fugacity zc

to unity; the coexistence value is obtained afterward using
histogram extrapolation [34–36]. In addition, we also store
polymer histograms in order to facilitate extrapolations in
ηr

p. Obviously, since our GC simulations retain colloid and
polymer coordinates explicitly, we have full access to the
structural properties at all times. In this work, we calculate the
pair correlation functions, which are obtained using a standard
method [37], and compared to integral equation theory in
section 5.

4.5. Finite-size effects

Again, we emphasize the presence of finite-size effects close
to the critical point. For the AO model with quenched disorder,
these turn out to be rather peculiar. The point is illustrated
in figure 5, which shows the phase diagram in reservoir
representation for both the colloid and the polymer matrix.
Plotted are binodal curves for several system sizes L. Also
shown in figure 5 are the critical points of the L → ∞
systems (squares). The latter were obtained using finite-size
scaling. The critical value of ηr

p was extracted from the Binder
cumulant [14, 40]. The critical value of ηc (and similarly ηp)
was obtained by linearly extrapolating η∗

c (L) in the variable
1/L. Here, η∗

c (L) is the value of ηc obtained in a finite
system of size L at the critical value of ηr

p. Typically, one
expects finite-size effects to vanish away from the critical
point. Figure 5 seems to confirm this, but the effect is rather
asymmetric. For example, in the colloid matrix, finite-size
effects quickly vanish in the liquid branch of the binodal, but
remain strong in the gas branch. Interestingly, for the polymer
matrix, the trend is reversed.

Also shown in figure 5 are the critical points of
the corresponding bulk systems without quenched disorder.
Compared to these, both the polymer and the colloid matrix
shift the critical point to higher ηr

p. This finding is in agreement
with the theoretical results of [12], in which colloid and
polymer matrices are also treated explicitly. In addition, our
data reveal that the corresponding shift in ηc is qualitatively
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Figure 5. Binodals of the AO model in reservoir representation
obtained via GC simulations. Shown is the binodal inside the colloid
matrix (a), and the polymer matrix (b), for various system sizes L as
indicated. The squares mark the critical points in the thermodynamic
limit L → ∞. For comparison, data from the corresponding clean
systems, i.e. without quenched disorder, have also been included. In
(a), the binodal of the clean AO model with q = 0.8 is shown, where
the open circle marks the critical point (data taken from [38]). The
open circle in (b) marks the critical point of the clean AO model with
q = 1, taken from [39].

affected by the type of matrix: for the colloid (polymer) matrix,
ηc increases (decreases) compared to its bulk value. The results
of [12] do not reveal this trend: for both types of matrix, a
decrease in ηc is predicted.

5. Results

5.1. Structural properties in the polymer matrix model

We begin the comparison between theory and simulation by
considering the polymer matrix model. To this end, we
calculated the radial distribution functions (RDFs) of the AO
model inside the polymer matrix at two distinct state points.
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(r
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r/σ
m
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1

1.2

g cp
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)

Figure 7. Cross correlations of the AO model inside a polymer
matrix. The upper panel shows the colloid–polymer RDF obtained at
ηc = 0.025 and ηp = 0.5; the lower panel at ηc = 0.15 and ηp = 0.2.
In both panels, the full lines were obtained using the PY closure, and
the dashed lines with the MS closure; circles denote simulation
results. Also shown in the upper panel is the HNC result (dotted
line). In the lower panel, the HNC result is absent, since no
convergent solution could be obtained here.

The first state point is at a low colloid and high polymer
packing fraction, namely ηc = 0.025 and ηp = 0.5. In
figure 6, we show the colloid–colloid and polymer–polymer
RDFs for this state point, as well as the correlations with the
matrix. Regarding the colloid–colloid RDF, we observe that
HNC yields the best agreement with the simulation, while
PY and MS evidently underestimate the colloid–colloid RDF
at small distances. The same trend also shows up in the
polymer–polymer RDF. Here, HNC is almost ‘on top’ of the
simulation result, while PY and MS slightly underestimate it.
We also observe that the colloid–matrix and polymer–matrix
correlations are almost insensitive to the chosen closure, and in
good agreement with the simulation result. The cross colloid–
polymer correlations for the selected state point are shown in
the upper panel of figure 7. Again, we see good agreement
between HNC and simulation, while the PY and MS closures
now overestimate the simulation result (at small distances).

0

2

4

g cc
(r

)

r/σ
m

1

1.1

1.2

1.3

g pp
(r

)

0

0.5

1

1.5

g cm
(r

)

r/σ
m

0

1

2

3

g pm
(r

)

Figure 6. Pair correlation functions of the AO model inside a polymer matrix, obtained at a state point with ηc = 0.025 and ηp = 0.5. Shown
is the colloid–colloid RDF (upper left), the polymer–polymer RDF (lower left), the colloid–matrix RDF (upper right), and the polymer–matrix
RDF (lower right). The full lines are the correlations obtained using the PY closure, dashed lines with the MS closure, and the dotted lines
with the HNC closure. The circles denote simulation results.
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Figure 8. Pair correlation functions of the AO model inside a polymer matrix, obtained at a state point with ηc = 0.15 and ηp = 0.2. Shown is
the colloid–colloid RDF (upper left), the polymer–polymer RDF (lower left), the colloid–matrix RDF (upper right), and the polymer–matrix
RDF (lower right). The full lines are the correlations obtained using the PY closure, dashed lines with the MS closure. The circles denote
simulation results. Due to numerical instabilities, no HNC results could be obtained at this state point.
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Figure 9. Pair correlation functions of the AO model inside a colloid matrix, obtained at a state point with ηc = 0.05 and ηp = 0.3. Shown is
the colloid–colloid RDF (upper left), the polymer–polymer RDF (lower left), the colloid–matrix RDF (upper right), and the polymer–matrix
RDF (lower right). The full lines are the correlations obtained using the PY closure, the dotted lines with the HNC closure; circles denote
simulation results. Due to numerical instabilities, no MS results could be provided for this state point.

The overall good performance of the HNC closure is rather
surprising, since this closure is typically considered not to be
very precise for short-ranged potentials. Our findings suggest
that the shortcomings of the HNC closure are less severe in the
case of fluids with quenched disorder, at least for the state point
considered here.

Next, we consider a state point at higher colloid, and lower
polymer packing fraction, namely ηc = 0.15 and ηp = 0.2.
Here, we encountered severe numerical difficulties using the
HNC closure, while results could still be obtained with PY
and MS. Consequently, no results for HNC are reported for
this state point. We believe that the numerical difficulties
arise from the fact that this state point is rather close to
the binodal (see the left phase diagram of figure 12). Our
analysis thus suggests that, for such state points, PY and MS
are better suited. In figure 8, we show the colloid–colloid
and polymer–polymer RDFs, as well as the correlations with
the matrix. Regarding the colloid–colloid correlations, PY
and MS yield nearly identical results, which agree well with

the simulation result except at small distances. In contrast,
regarding the polymer–polymer RDF, the PY and MS closures
start to deviate from each other at small distances, with MS
being closest to the simulation result. This trend is also
present in the correlations with the matrix. For the colloid–
matrix correlations, PY and MS yield similar results, while
for the polymer–matrix correlations, MS clearly gives the best
agreement with the simulation. The colloid–polymer cross
correlations are also best described by the MS closure (see the
lower panel of figure 7). Hence, when describing state points
close to the binodal, MS appears to be the most accurate.

5.2. Structural properties in the colloid matrix model

We now consider the AO model inside the colloid matrix
model. Again, the RDFs were collected at two state points,
the first one being at ηc = 0.05 and ηp = 0.3. In figure 9, we
show the corresponding colloid–colloid and polymer–polymer
RDFs, as well as the correlations with the matrix. At this state
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Figure 10. Cross correlations of the AO model inside a colloid
matrix. In both panels, the circles denote simulation results. The
upper panel shows the colloid–polymer RDF obtained at ηc = 0.05
and ηp = 0.3. At this state point, no MS result could be obtained, and
so we only report PY (solid line) and HNC (dotted line). The lower
panel shows the colloid–polymer RDF at ηc = 0.225 and ηp = 0.1.
At this state point, the HNC closure failed to converge, and so we
only report the PY result (solid line) and the MS result (dashed line).

point, we could not achieve a convergent solution using the
MS closure, leaving only the HNC and PY results. Regarding
the colloid–colloid and polymer–polymer correlations, HNC
and PY yield similar results, with HNC being slightly closer to
the simulation result. However, both closures evidently fail
to predict the colloid–matrix correlations at short distances.
In this regime, the simulated colloid–matrix RDF rises quite
steeply, while the HNC and PY curves remain essentially flat.
Regarding the polymer–matrix correlations, the agreement of
HNC and PY with the simulation is better (although closer
inspection does reveal some curvature in the simulation result,
not reproduced by the theories). The colloid–polymer cross
correlations for the selected state point are shown in the upper
panel of figure 10. Here, we observe overall good agreement
between both closures and the simulation result, HNC being
slightly superior.

For the second state point, we choose ηc = 0.225
and ηp = 0.1. In figure 11, we show the corresponding
colloid–colloid and polymer–polymer RDFs, as well as the
correlations with the matrix. At this state point, we could
not achieve a convergent solution using the HNC closure,
leaving only the PY and MS results. As figure 11 shows,
with the exception of the polymer–polymer correlations, both
closures yield similar results. Regarding the colloid–colloid
correlations, the agreement with the simulation is very good.
For the remaining correlations, at short distances, pronounced
deviations from the simulations arise. Regarding the polymer–
polymer correlations, PY and MS yield different results, with
MS being closest to the simulation result. Interestingly, this
trend also appeared in the polymer matrix model (see the lower
left frame of figure 8). The colloid–polymer cross correlations
are shown in the lower frame of figure 10. Again, PY and MS
deviate slightly from each other at short distances, with MS
showing the best agreement with the simulation.

5.3. Binodal

Finally, we consider the binodal curves. Due to the difficulty
of reaching critical pressures, we were unable to construct the
binodal using the HNC closure. We only succeeded in this
accomplishment using the PY and MS closures. In the left
frame of figure 12, we show the PY and MS binodals, as well
as the simulation result, for the polymer matrix model. Also
shown is the density functional theory (DFT) result of [12].
We observe that all the theoretical binodals underestimate the
simulation result considerably. The simulated critical point is
at ηc = 0.073 and ηp = 0.807. The theoretical estimates read
as ηc = 0.121 and ηp = 0.253 for the PY closure; ηc = 0.109
and ηp = 0.304 for the MS closure; the DFT critical point is
at ηc = 0.097 and ηp = 0.278. The critical colloid packing
fraction is thus best captured by the DFT, while the critical
polymer packing fraction is captured slightly better by the PY
and MS closures. The problem of convergence of the closures
was even more severe in the colloid matrix model (see the right
frame of figure 12). Here, the binodal could only be obtained
using the PY closure. However, the theoretical solution is
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Figure 11. Pair correlation functions of the AO model inside a colloid matrix, obtained at a state point with ηc = 0.225 and ηp = 0.1. Shown
is the colloid–colloid RDF (upper left), the polymer–polymer RDF (lower left), the colloid–matrix RDF (upper right), and the polymer–matrix
RDF (lower right). The full lines are the correlations obtained using the PY closure, the dashed lines with the MS closure; circles denote
simulation results. Due to numerical instabilities, no HNC results could be provided for this state point.
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Figure 12. Binodal curves in system representation of the AO model in the presence of quenched disorder, as obtained using computer
simulation and various theoretical approaches. In both frames, the dashed lines show the binodal obtained in the simulations of the present
work, where the open triangle is the corresponding simulation estimate of the critical point in the thermodynamic limit. The left frame shows
results for the polymer matrix, the right frame for the colloid matrix. For the polymer matrix, the binodal could only be obtained using the MS
closure (solid line) and PY (dotted line). For completeness, the DFT result of [12] is also shown (open circles). The critical points for the DFT
and the MS curves are depicted with the open and full diamonds, respectively. The right frame shows the binodal for the colloid matrix model.
Here, only the PY closure converged (solid line), with the black diamond marking the location of the critical point.

clearly not very accurate, since it does not even capture the
slope of the simulated binodal. For the colloid matrix model,
the critical point obtained in the simulations is at ηc = 0.192
and ηp = 0.292, to be compared to the PY values ηc = 0.180
and ηp = 0.186.

6. Conclusions

In summary, we have studied the structural properties and
the unmixing transition in the Asakura–Oosawa model of
colloid–polymer mixtures in the presence of different types
of quenched disorder. Our theoretical approach was based
on the replica Ornstein–Zernike equations, using the HNC,
PY and MS integral equation closures. Our simulation
approach utilized the grand canonical Monte Carlo method.
We found that all three closures can reasonably predict the
structural properties of the Asakura–Oosawa model in the
presence of quenched polymer disorder, HNC being the most
reliable. However, HNC fails to capture the phase coexistence
properties and better results are achieved within the PY and
MS closures.

When quenched colloid disorder is considered, the
performance of the three closures becomes unreliable, and they
do not even qualitatively capture the shape of the unmixing
binodal. This inadequacy prompts the adoption of more refined
approaches based on self-consistency strategies, such as those
hinging upon thermodynamic or structural constraints [16].
Our simulation results may serve as benchmark data for future
tests of such more sophisticated theories.

For the future, we foresee three conceivable routes to
advance our theoretical understanding of fluids with quenched
disorder. First of all, it would be interesting to develop a liquid-
integral equation theory which correctly predicts the phase
behavior close to the critical point (which should resemble that
of the random-field Ising model [14]). This may be achieved
via a generalization of the hierarchical reference theory [41]

to fluids with quenched disorder. Second, different particle
shapes other than spheres should be considered, such as rod-
like colloidal particles and solutes [42]. In soft-matter systems,
quenched disorder involving non-spherical particles is already
a reality [43]. Finally, it would be challenging to extend
the static density functional theory for the Asakura–Oosawa
model [44–48] toward both dynamical and non-equilibrium
situations [49]. This has already been performed in the
bulk [50–54], but the application to a porous medium is still
elusive.
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[11] Schöll-Paschinger E, Levesque D, Weis J J and Kahl G 2001
Phys. Rev. E 64 011502
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H B Schüttler (Berlin: Springer) p 45

[33] Virnau P and Müller M 2004 J. Chem. Phys. 120 10925
[34] Ferrenberg A M and Swendsen R H 1989 Phys. Rev. Lett.

63 1195
[35] Ferrenberg A M and Swendsen R H 1988 Phys. Rev. Lett.

61 2635

[36] Newman M E J and Barkema G T 1999 Monte Carlo Methods
in Statistical Physics (Oxford: Clarendon)

[37] Allen M P and Tildesley D J 1989 Computer Simulation of
Liquids (Oxford: Oxford University Press)

[38] Vink R L C, Binder K and Horbach J 2006 Phys. Rev. E
73 056118

[39] Fortini A, Schmidt M and Dijkstra M 2006 Phys. Rev. E
73 051502

[40] Binder K 1981 Z. Phys. B 43 119
[41] Reatto L and Parola A 1996 J. Phys.: Condens. Matter 8 9221
[42] Sarkisov L and van Tassel P R 2005 J. Chem. Phys.

123 164706
[43] Kluijtmans S G J M, Koenderink G H and Philipse A P 2000

Phys. Rev. E 61 626–36
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Condens. Matter 14 L1
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